MATHEMATICS METHODS

MAWA Semester 2 (Unit 3&4) Examination 2018 Calculator-assumed

Marking Key

© MAWA, 2018

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 1 of term 4, Fri October 12th 2018

Section Two: Calculator-assumed

(100 Marks)

Question 8 (a)

(2 marks)

Solution	
Bernoulli distribution with parameter	
1	
$p = \frac{1}{300}$	
Mathematical behaviours	Marks
states Bernoulli distribution	1
states parameter of	
1	1
$p = \frac{1}{300}$	

Question 8 (b)

(2 marks)

Solution	
$E(X) = \frac{1}{300}$	
Variance(X)	
$=\frac{1}{300}\left(1-\frac{1}{300}\right)$	
$=\frac{1}{300}\left(\frac{299}{300}\right)$	
$=\frac{299}{90000}$	
Mathematical behaviours	Marks
states correct mean	1
states variance	1

Question 9 (a)

(2 marks)

	Solution		
$E(X) = \mu = \int_{-\infty}^{\infty} x \times p(x) dx \qquad c$ $= \int_{-\infty}^{5} x \times \frac{1}{2} dx \qquad =$	$\sigma^2 = \int_2^5 (x - 3.5)^2 \times \frac{1}{3} dx$ = 0.75	$\int_{2}^{5} x \times \frac{1}{3} dx$	▲ 3.5
$= \int_{2}^{3} \frac{1}{3} dx$ $= 3.5$		$\int_{2}^{5} (x-3.5)^{2} \times \frac{1}{3} dx$	_
			0.75
Mat	hematical behaviours		Marks
 determines the expected v 	value		1
• determines the variance			1

Question 9 (b)

(2 marks)

Solution	
$P(x \le 4 \mid x > 3) = \frac{P(3 < x \le 4)}{P(x > 3)}$	
$\frac{1}{3}$ 1	
$=\frac{1}{2}=\frac{1}{2}$	
Mathematical behaviours	Marks
determines numerator	1
determines denominator	1

Question 9 (c)

(3 marks)

	Solution	
$\int 0$	<i>x</i> < 2	
$F(x) = - \begin{cases} \int_{2}^{x} \frac{1}{3} dx = \frac{1}{3}(x-2) \end{cases}$	$2 \le x \le 5$	
L 1	<i>x</i> > 5	
Mathematical	l behaviours	Marks
• identifies need to integrate <i>f</i> (<i>x</i>)		1
• determines definite integral using co	orrect limits of integration (2,x)	1
• determines $F(x)$ and states it as a piecewise function 1		1

Question 9 (d)

Question 9 (d)	(2 marks)
Solution	
$F(x) = 0.75 \Longrightarrow 0.75 = \frac{1}{3}(x-2)$	
ie $x = 4.25$	
Hence the upper quartile is 4.25.	
Mathematical behaviours	Marks
• states $0.75 = \frac{1}{3}(x-2)$	1
• solves for <i>x</i>	1

3

Question 10 (a)

Question 10 (a)	(2 marks)
Solution	
$P = P_o e^{kt}$	
ie $P = 35e^{0.03t}$	
$P = 50 \Longrightarrow 50 = 35e^{0.03t}$	
ie $t = 11.88$	
ie the population will reach 50 million in roughly 11 years and 11 months	
Mathematical behaviours	Marks
• substitutes $P_0 = 35$ and $P = 50$ to obtain required equation	1
• solves equation to obtain <i>t</i>	1

Question 10 (b)

(2 marks)

Solution	
In 15 years the country's population = $35e^{15\times0.03}$	
In 15 years the city's population = $(0.22)35e^{c\times 15}$ where c represents its growth rate	e
Hence $(0.22)35e^{c\times 15} = (0.4)35e^{15\times 0.03}$	
Solving gives $c \approx 0.0699$	
Hence the continuous growth rate is approximately 7%.	
Mathematical behaviours	Marks
• equates city's population to 40% of country's population in 15 years	1
 solves equation and states percentage growth rate 	1

MATHEMATICS METHODS

Question 12 (a)

Solution	
Confidence interval is $(\hat{p} - E, \hat{p} + E) = (0.53, 0.61)$	
So $\hat{p} = \frac{0.53 + 0.61}{2} = 0.57$	
Mathematical behaviours	Marks
Obtains correct answer	1

Question 12 (b)

Solution	
$E = z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	
ie $0.04 = 1.96\sqrt{\frac{0.57 \times 0.43}{n}}$	
Solving for n gives $n \cong 588.5$	
So the sample size was 589 (approximately)	
Mathematical behaviours	Marks
• Uses $Z_{\alpha} \approx 1.96$	1
Solves for <i>n</i> and rounds	1

Question 12 (c)

$E = z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ $0.07 = z_{\alpha} \sqrt{\frac{0.57(0.43)}{589}}$ *P*(-3.43 < *Z* < 3.43) = 0.9993964

Solution

Hence the level	of confidence is 99.94%
	Mathematical behaviours

•	Substitutesvalues into error equation
•	Substitutes values into enor equation

Solves for z_{α} •

 $z_{\alpha} = 3.43$

States level of confidence to at least 1 decimal place

Question 12 (d)

(2 marks)

1 1

1

Marks

Solution			
From the confidence interval in 10(c), there is a 99.94% probability that p lies between 0.5			
and 0.64, and in particular $p > 0.5$. So the claim is justified.			
Mathematical behaviours Marks			
States the claim is justified	1		
Gives a valid reason	1		

6 CALCULATOR-ASSUMED

SEMESTER 2 (UNIT 3&4) EXAMINATION (1 mark)

Question 13 (a)

(3 marks)

Solution	
$v(t) = 3t^2 + 2t - 9$	
v(0) = 9	
a(t) = 6t - 2	
a(0) = -2	
Since velocity and acceleration are opposing one another, the particle is slowi	ng down
Mathematical behaviours	Marks
• calculates v(0)	1
• differentiates $v(t)$ to obtain $a(t)$ and $a(0)$	1
	1

states particle is slowing down ٠

Question 13 (b)

(2 marks)

Solution	
$v(t) = 3t^2 - 2t + 9,$	
$\therefore s(t) = t^3 - t^2 + 9t + c$	
$(0,-1) \Longrightarrow c = -1$	
$\therefore s(t) = t^3 - t^2 + 9t - 1$	
$s(5) = 5^3 - 5^2 + 9(5) - 1 = 144$	
Hence its final position is 144m from the origin.	
Mathematical behaviours	Marks
• integrates velocity equation to determine displacement equation including	
c = -1	1
• substitutes $t = 5$, calculates and states final position, with unit	1

7

Question 14

Solution	
$A(x) = 2x \cdot e^{-x^{2}}$ $\frac{dA}{dx} = 2\left(-2x^{2}e^{-x^{2}} + e^{-x^{2}}\right) = 2e^{-x^{2}}\left(-2x^{2} + 1\right)$ $\frac{dA}{dx} = 0 \Rightarrow x = \pm \frac{1}{\sqrt{2}}$ $x = \frac{1}{\sqrt{2}} \Rightarrow y = e^{-\frac{1}{2}}$ Hence <i>C</i> has coordinates $\left(\frac{1}{\sqrt{2}}, e^{-\frac{1}{2}}\right)$ $Define f(x) = 2xe^{-x^{2}}$ $\frac{d}{dx}(f(x)) = -(x^{2} + 1)$ $\frac{d}{dx}(f(x)) = -(x^{2} + 1)$ $\frac{d}{dx}(f(x)) = 0, x^{2}$ $\left[x = -\frac{1}{\sqrt{2}}\right]$	done $done^{2} - 2 \cdot e^{-x^{2}}$ $\left\ \frac{\sqrt{2}}{2}, x = \frac{\sqrt{2}}{2} \right\}$
Mathematical behaviours	Marks
• states $A(x)$	1
• differentiates <i>A</i> (<i>x</i>)	1
• solves $\frac{dA}{dx} = 0$	1
• states co-ordinates of <i>C</i>	1

Question 15 (a)

Solution	
Probability of winning a prize = $0.1 + 0.001$	
= 0.101	
Mathematical behaviours	Marks
 uses Addition Principle to calculate the correct probability 	1

Question 15 (b)

Solution	
<i>X~Bin</i> (20,0.101)	
Mathematical behaviours	Marks
states Binomial distribution	1
states correct parameters	1

Question 15 (c)

Solution $P(X \le 3) = {20 \choose 0} (0.101)^0 (0.899)^{20} + {20 \choose 1} (0.101)^1 (0.899)^{19} + {20 \choose 2} (0.101)^2 (0.899)^{18} + {20 \choose 3} (0.101)^3 (0.899)^{17}$ Mathematical behaviours Marks identifies that "no more than 3 prizes" means "can win 0,1,2, or 3 prizes" 1 states correct expression for the probability

Question 15 (d)

Solution $P(X \le 3)$ Bincdf(0,3,20,0.101)=0.8634Mathematical behavioursMarks• states probability1

Question 15 (e)

Solution		
Using CAS, <i>k</i> =3	♥ File Edit Type ◆ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ Y ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ● ♥ ● ♥ ● ♥ ● ●	≥ 20,0 ► ►
	$ \begin{array}{c c} x & y1 \\ \hline 0 & 0.1189 \\ 1 & 0.2672 \\ 2 & 0.2851 \\ 3 & 0.1922 \\ 4 & 0.0918 \\ 5 & 0.0330 \end{array} $	
Mathematical behaviours		Marks
• states k=3		1

(2 marks)

(2 marks)

(1 mark)

MATHEMATICS METHODS

Question 16 (a) (i)

	Solution	
\int_{-3}^{2}	f(x) dx = -3 + 4 - 4 = -3	
	Mathematical behaviours	Marks
٠	indicates addition of signed areas	1
•	determines result	1

Question 16 (a) (ii)

Solution	
Area = 3+4+4=11	
Mathematical behaviours	Marks
expresses the area as a sum of areas	1
determines result	1

Question 16 (b)

Solution $\int_{2}^{0} (x-2f(x)) dx = \int_{2}^{0} x \, dx + 2\int_{0}^{2} f(x) \, dx$ $=\left[\frac{x^2}{2}\right]_2^0 + 2(-4)$ $=\frac{1}{2}(0-4)-8=-10$ Mathematical behaviours Marks applies the additivity of integrals to split the integral 1 ٠ applies the linearity of integrals to deduce $\int_{0}^{\infty} (-2f(x)) dx = 2 \int_{0}^{\infty} f(x) dx$ 1 • 1 determines result .

Question 16 (c)

(3 marks)

Solution	
Maximum value of $F(x)$ occurs where $F'(x) = 0$	
$F'(x) = \frac{d}{dx} \int_{-3}^{x} f(t) dt = f(x)$	
$f(x) = 0 \Longrightarrow x = -2, 0, 2$	
F(-2) = -3, F(0) = 1, F(2) = -3	
Hence, max is 1.	
Mathematical behaviours	Marks
applies the Fundamental Theorem	1
• solves $f(x) = 0$, stating $x = -2, 0, 2$	1
determines maximum value	1

(2 marks)

Question 17 (a)

Solution					
$D \sim N(65, 4.9^2)$					
	small	medium		arge	
Proportion of peaches $P(d < 57) = 0.0513$ $P(57 \le d \le 70) = 0.7950$ 0.1538		.1538			
Mathematical haboviaura					
			IVIAIKS		
determines both probabilities			1		

Question 17 (b)

(3 marks)

	Solution		
Let $X = profit$			
$\mu = \sum x p(x)$			
$= 0.12 \times 0.0513 + 0.2$	$23 \times 0.795 + 0.27 \times 0.1538$		
= 0.2305			
$\approx 23c$			
$\sigma^2 = \sum (x - \mu)^2 p(x)$			
$=(0.12-0.23)^2 \times 0.00$	$0513 + (0.23 - 0.23)^2 \times 0.795 + (0.23)^2$	$(7-0.23)^2 \times 0.1538$	
= 0.00087	🜣 Edit Calc SetGraph 🔶 🖂	Stat Calculation	×
$\sigma = 0.0294$		One-Variable	
$\approx 2.9c$	list1 list2 list3	x =0.2305	089
	2 0.23 0.795	$\Sigma_{X} = 0.2305$ $\Sigma_{X}^{2} = 0.0540$	532 1062
	3 0.27 0.1538	$\sigma_x = 0.0294$ $s_x = 2.9437$	237
		minX = 1.0001	
Ma	thematical behaviours		Marks
states a calculation to det	termine the mean or variance		1
determines mean			1
determines standard devi	ation		1

Question 17 (c)

Solution		
Let $T = 25X - 0.15$		
E(T) = 25E(X) - 0.15	Std $Dev(T) = 25 \times Std Dev(X)$	
= 25(0.2305) - 0.15	$= 25 \times 0.0294$	
= 5.6125	= 0.735	
≈ \$5.61	$\approx 74c$	
Mathematic	al behaviours	Marks
states linear transformation requir	red	1
determines mean		1
determines standard deviation		1

Question 18 (a)

(4 marks)

	Solution		
$y = x \ln x$			
$\frac{dy}{dx} = (\ln x)(1) + x \cdot \frac{1}{x}$ $\frac{dy}{dx} = \ln x + 1$ $\frac{d^2 y}{dx^2} = \frac{1}{x}$ For stationary points.	$\begin{array}{c c} & \text{Edit Action Interactive} & \times \\ \hline \begin{array}{c} & & \\ \hline b_{2} & \\ \hline b_{2} & \\ \hline \end{array} & \begin{array}{c} & \\ \hline \\ \hline \end{array} & \begin{array}{c} & \\ & \\ \hline \end{array} & \begin{array}{c} & \\ & \\ \hline \end{array} & \begin{array}{c} & \\ & \\ & \end{array} & \begin{array}{c} & \end{array} & \begin{array}{c} & \\ & \end{array} & \end{array} & \begin{array}{c} & \\ & \end{array} & \end{array} & \begin{array}{c} & \end{array} & \begin{array}{c} & \\ & \end{array} & \end{array} & \begin{array}{c} & \end{array} & \begin{array}{c} & \\ & \end{array} & \end{array} & \begin{array}{c} & \end{array} & \begin{array}{c} & \\ & \end{array} & \end{array} & \begin{array}{c} & \end{array} & \end{array} & \end{array} & \begin{array}{c} & \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{c} & \end{array} & \end{array} & \end{array} & \end{array} & \end{array} \\ & \end{array} & \end{array} & \end{array} & \end{array} &$	$\frac{\mathrm{d}^2}{\mathrm{d}x^2}(f(x))$ $\frac{\mathrm{d}^2}{\mathrm{d}x^2}(f(x)) x = e^{-1}$ $f(\frac{1}{e^1}) $	$\frac{1}{x}$ e $-e^{-1}$
$\ln x + 1 = 0$			
ie $\ln x = -1$			
ie $x = e^{-1}$			
$x = e^{-1} \Longrightarrow y = -\frac{1}{e}$			
$\frac{d^2 y}{dx^2} = \frac{1}{e^{-1}} = e > 0$, hence a mini	mum turning point		
Thus exact coordinates of minim	num turning point = $\left(\frac{1}{e}, \frac{-1}{e}\right)$		
Mathe	matical behaviours		Marks
 differentiates correctly using 	the product rule		1
• equates first derivative to zero to determine <i>x</i> co-ordinate of stationary			
points			1
 uses second derivative test to determine nature of turning point 		1	
determines correct coordinates of turning point		1	

Question 18 (b)

Solution		
Since		
$\frac{d^2y}{dx^2} = \frac{1}{x} \neq 0 \text{ for any } x \text{ value.}$		
Hence the curve cannot have a point of inflection.		
Mathematical behaviours	Marks	
 states second derivative is never zero hence no P.O.I. 	1	

Question 19 (a)

Solution	
$dB = 10\log_{10}(\frac{I}{I_0})$	
$60 = 10\log_{10}(\frac{I}{1 \times 10^{-12}})$	
$I = 10^{-6} \text{ Watts/m}^2$	
Mathematical behaviours	Marks
• substitutes $dB = 60$	1
solves the equation	1

Question 19 (b)

(2 marks)

Solution	
$k = 10\log_{10}(\frac{I}{I_0}) \Longrightarrow 0.1k = \log_{10}(\frac{I}{I_0}) \Longrightarrow 10^{(0.1k)} = \frac{I}{I_0} \Longrightarrow I = 10^{(0.1k)}I_0$	
$k = 85 \Longrightarrow I_g = 10^{(0.1 \times 85)} I_0 \Longrightarrow I_g = 10^{8.5} I_0$	
Mathematical behaviours	Marks
rearranges log expression correctly	1
• substitutes $k = 85$ and states I_g in terms of I_o	1

Question 19 (c)

Solution		
$\frac{I_g}{I_c} = \frac{10^{8.5} I_0}{10^6 I_0} = 10^{2.5} \approx 316$		
ie the gunshot is approximately 316 times louder than the restaurant conversation		
Mathematical behaviours	Marks	
• evaluates the ratio $\frac{I_g}{I_c}$ correctly	1	

Question 20 (a)

Solution		
$y(9) = 0 \Longrightarrow ae^{-bt} \sin 9c = 0 \Longrightarrow 9c = \pi$ $\Longrightarrow c = \frac{\pi}{2} \approx 0.349$	Define f(t)=ae ^{-b} solve(f(9)=0,c) {c=0.34906585	t ^t sin(ct) ▲ done
$\frac{dy}{dt} = -abe^{-bt} \sin ct + ace^{-bt} \cos ct = ae^{-bt} (c \cos ct - b \sin ct)$ max at $t = 4$, $\Rightarrow \frac{dy}{dt} _{t=4} = 0$ ie $-abe^{-bt} \sin ct + ace^{-bt} \cos ct = 0$ ie $-ae^{-bt} (b \sin ct - c \cos ct) = 0$	$\frac{d}{dt} (f(t))$ $-(a \cdot b \cdot \sin(c \cdot t) - a \cdot d)$ solve $\left(\frac{d}{dt} (f(t)) = 0\right)$ $\begin{cases} \frac{0.349 \cdot \cos(4 \cdot 0.3)}{\sin(4 \cdot 0.349)} \\ 0.349 \cdot \cos(4 \cdot 0.349) \end{cases}$	$b = \frac{c \cdot \cos(c \cdot t) \cdot e}{\sin(4 \cdot c)}$ $b = \frac{c \cdot \cos(4 \cdot c)}{\sin(4 \cdot c)}$ $49)$ 06163290595
ie $b\sin ct - c\cos ct = 0$ ie $b\sin(4 \times 0.349) - 0.439\cos(4 \times 0.349) = 0 \Longrightarrow b = 0.0616$	Define f(t)=ae ⁻¹	0.0616t _{sin} (0 ►
$y(4) = 60 \Longrightarrow ae^{-(0.0616 \times 4)} \sin(4 \times 0.349) = 60 \Longrightarrow a = 78.0.$	solve(f(4)=60,a {a=	done) :77.95251617}
Mathematical behaviours		Marks
 uses (9,0) to conclude 9c = π solves for c 		1 1
• determines derivative function		1
 equates derivative function to 0 at t = 4 and solves for b uses (4,60) to solve for a since all approximate correct to 2 significant figures 		1
 gives all answers correct to 3 significant figures 		

Question 20 (b)

Solution	
$y\left(t+\frac{\pi}{c}\right) = ae^{-b\left(t+\frac{\pi}{c}\right)}\sin\left(c\left(t+\frac{\pi}{c}\right)\right)$	
$= ae^{-bt}e^{-\frac{b\pi}{c}}\sin(ct+\pi)$ = $-ae^{-bt}e^{-\frac{b\pi}{c}}\sin ct = -ry(t)$	
Mathematical behaviours	Marks
• replaces t with $t + \frac{\pi}{c}$ to obtain required function	1
 uses indices laws to factor out ae^{-bt} uses sin(ct + π) = -sin ct to complete argument 	1

Question 20 (c)

Solution	
The mass travels 120 cm in the first 9 seconds.	
In the next 9-second period the mass travels $120r$ cm,	
where from part (b) $r = e^{-\pi b/c} \cong e^{-\pi \times \frac{0.0616}{0.349}} \cong 0.574$	
Hence distance travelled between its first and second return to the origin is	
$0.574 \times 120 = 68.88 \mathrm{cm} \approx 69 \mathrm{cm}$	
Mathematical behaviours	Marks
deduces that the mass travels 120 m in the first 9 seconds	1
• evaluates r	1
obtains correct answer to the nearest centimetre	1

Question 21 (a)

(3 marks)

Solution		
$\hat{p} = \frac{465}{700} \approx 0.6643, \qquad E = 1.96\sqrt{\frac{(0.6643)(1 - 0.6643)}{700}} \approx 0.0350$		
Cl is $0.6643 - 0.0350$		
ie 0.6293		
So the 95% confidence interval is 0.629		
Mathematical behaviours	Marks	
calculates sample proportion correctly	1	
calculate standard error correctly	1	
calculates interval correctly	1	

Question 21 (b)

(2 marks)

Solution	
Because the old satisfaction rate (65%) lies within the new confidence interval, the recent	
survey does not provide conclusive evidence that the satisfaction rate has improved.	
Mathematical behaviours	Marks
 states that survey is not conclusive 	1
states a valid reason	1

Question 21 (c) (i)

(3 marks)

Question 21 (c) (ii)

Solution	
$E = \frac{1}{\sqrt{n}}$	
Mathematical behaviours	Marks
states Margin of error	1

Question 21 (c) (iii)

Solution $E_{95\%} < E_{\text{simple interval}}$ Hence the interval $\hat{p} - E is a subset of the interval <math>\hat{p} - \frac{1}{\sqrt{n}}$ and hence the confidence interval of $\hat{p} - \frac{1}{\sqrt{n}} is at least 95%$ Mathematical behaviours Marks uses the relationship between the errors to draw valid conclusion 1

Question 21 (d)

Solution True margin of error $E = z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ If $E = \frac{1}{\sqrt{n}}$ and $\hat{p} = 0.7, \frac{1}{\sqrt{n}} = z_{\alpha} \sqrt{\frac{(0.7)(0.3)}{n}}$ *ie* $\frac{1}{\sqrt{n}} = z_{\alpha} \frac{\sqrt{0.21}}{\sqrt{n}} \Rightarrow z_{\alpha} \approx 2.18$ P(-2.18 < z < 2.18) = 0.9707 Hence level of confidence is approximately 97% Mathematical behaviours Marks substitute $\hat{p} = 0.7$ and equates true E to E for simple interval 1 • 1 solves inequality to determine z1 states 97% level of confidence

Question 21 (e)

Solution $\frac{1}{\sqrt{n}} = 0.04 \Longrightarrow n = 625$ Hence a sample size of 700 is appropriate Mathematical behaviours Marks calculates *n* and deduces that sample size is appropriate 1

(1 mark)

(3 marks)